

Neben der Erfassung von Messdaten mit den modularen Verstärkern, können mit imc Messgeräten auch Daten von digitalen Bussystemen erfasst werden. Zurzeit werden die in diesem Dokument aufgelisteten Bussysteme unterstützt.

Die mit Bus-Interfaces erfassten Daten werden durchgängig gemeinsam und einheitlich mit den übrigen analogen und digitalen Messdaten verarbeitet und verwaltet. Sie können mit diesen synchron in Echtzeit verrechnet werden, können Trigger auslösen und getriggert werden, sowie im Gerät und auf dem PC gespeichert werden. Je nach Software- und Hardwareausstattung ist auch eine gezielte Ausgabe von Daten auf die entsprechenden Bussysteme möglich.

Geräteplattform, max. Ausbau (Interface-Module) und imc Artikel-Nr.:

Gerät	CAN-Bus	CAN FD-Bus	LIN-Bus	ARINC-Bus	FlexRay-Bus	XCPoE-Master	XCPoE-Slave	PROFIBUS	PROFINET-IRT	EtherCAT	MVB-Bus	Modbus	IPTCom	RoaDyn
CRFX	11900028	11900202	11900029	11900226	11900031	11900211	11900212	11900093	11900253	11900040	11900081	11900272	11900097	11900084
ET	11910019	11910114	11910066	11910130	11910022	11910122	11910123			11910038	11910023		11910028	11910058
CRC	11700010	11700251	11700011	11700177	11700048	11700265	11700266	11700146	11700046	11700026				11700150
ET	11710011	11710145	11710012		11710048	11710049	11710151			11710023				11710136
CRC-R	11700133		11700134	11700178	11700135	11700267	11700268	11700147	11700285					11700151
ET	11710092		11710093		11710094									
SPAR-N	11300095		11300096	11300098	11300097									
ET	11310038		11310039	11310041	11310040									
CRXT		11100003	11100004	11100047	11100005	11100045	11100046	11100052	11100091	11100051				
CRSL	11800009		11800010	11800012	11800068									
BUSFX	12400008	12400009	12400010	12400013	12400012	12400014	12400028				12400015	12400043		

Legende:	 nicht verfügbar
	noch keine Verkaufsartikel-Nr. angelegt

Bauform

All diese Feldbus-Anbindungen sind Ausstattungs-Optionen ("Konfigurations-Module"), mit denen Geräte ab Werk ausgerüstet werden können. Ein nachträgliches Erweitern, Austauschen oder Umstecken durch den Benutzer ist nicht vorgesehen, wie z.B. bei den analogen Verstärkermodulen.

Betriebsbedingungen

In Abhängigkeit von der Modulvariante (mit oder ohne erweiterten Temperaturbereich, ET) sind die jeweiligen Betriebsbedingungen dem dazugehörigen Gehäusetyp zu entnehmen. Das Modul wird vom Messgerät versorgt. Die Datenspeicherung erfolgt über das Messgerät.

Technisches Datenblatt

CAN-Bus

CAN-Bus ist als Feldbus-System mit max. 1 Mbit/s Übertragungsrate sowohl im Fahrzeug (automotive) als auch im industriellen Umfeld etabliert und weit verbreitet. Das imc CAN-Bus Interface stellt zwei unabhängige, galvanisch isolierte CAN-Knoten zur Verfügung, über die zwei CAN-Busse sowohl empfangend als auch sendend in ein imc Messgerät integriert werden können.

Anschlüsse:

• 2x DSUB-9 (je 1 potentialfreier, galvanisch isolierter Knoten pro Stecker)

Software und Bedienung:

- Das Modul wird vollständig durch die Bediensoftware imc STUDIO unterstützt.
- Die CAN Bus Einstellungen werden in einem Assistenten durchgeführt. Die Bedienung des Assistenten ist dem Handbuch der Bediensoftware zu entnehmen.
- Als Zusatz-Optionen für die mit CAN-Interface ausgerüsteten Geräte ist ein Paket verfügbar (in Verbindung mit imc Online FAMOS), das ECU Protokolle unterstützt: OBD-2, CCP, KW2000, XCPoC (XCP over CAN), u.a.

Übertragungsprotokoll:

- CAN High Speed (ISO 11898) 1 MBaud
- CAN Low Speed (ISO 11519) 125 KBaud knotenweise per Software konfigurierbar

Isolationsfestigkeit:

• 60 V gegen Systemmasse (Gehäuse, CHASSIS)

Bemerkungen:

- Parametrierung von imc CANSAS Messmodulen direkt über das CAN-Bus Interface möglich.
- ullet Terminierungswiderstände (120 Ω) können durch die Software zugeschaltet werden.
- Knotenweise ist High / Low Speed über Software konfigurierbar.

Technische Daten - CAN-Bus

Parameter	Wert	Bemerkungen
Zahl der CAN-Knoten	2	je ein potentialfreier, galvanisch isolierter Knoten (jeweils CAN IN und CAN OUT) pro Stecker
Anschluss-Stecker	2x DSUB-9	
Topologie	Bus	
Übertragungsprotokoll	per Software umschaltbar:	individuell für jeden Knoten
	CAN High Speed (max. 1 MBaud)	nach ISO 11898
	CAN Low Speed (max. 125 kBaud)	nach ISO 11519
Betriebsart	Multi Master Prinzip	
Datenflussrichtung	senden und empfangen	
Baudrate	5 kbit/s bis 1 Mbit/s	per Software einstellbar; Maximum je nach gewähltem Protokoll (High/Low)
max. Kabellänge bei		CAN High Speed
Übertragungsrate	25 m bei 1000 kbit/s 90 m bei 500 kbit/s	Verzögerung des Kabels 5,7 ns/m
Terminierung	120 Ω	per Software für jeden Knoten zuschaltbar
Isolationsfestigkeit	60 V	gegen Systemmasse (Gehäuse, CHASSIS)
Direktes Parametrieren von imc CANSAS Messmodulen	ja	über den CAN-Knoten des Gerätes mittels imc STUDIO

Hinweis

Remote Frame

imc Geräte unterstützen zurzeit keine Remote Frames (RTR) gemäß CAN Spezifikation.

Technisches Datenblatt

CAN FD Bus

CAN FD Bus ist eine Erweiterung des Standard CAN Protokolls mit flexibel steigerbarer Übertragungsrate bis max. 8 Mbit/s. Insbesondere im Fahrzeugumfeld (automotive) erweitert es Einsatzbereiche, Datentransferraten und Buskapazität. Das imc CAN FD Bus Interface stellt zwei unabhängige, galvanisch isolierte CAN-Knoten zur Verfügung, über die zwei CAN-Busse sowohl empfangend als auch sendend in ein imc Messgerät integriert werden können. Es ist per Software sowohl auf CAN FD Modus als auch auf konventionellen Standard CAN Modus konfigurierbar und unterstützt alle relevanten Varianten des CAN FD Standards (ISO und non-ISO).

Anschlüsse: 2x DSUB-9 (je 1 potentialfreier, galvanisch isolierter Knoten pro Stecker)

Software und Bedienung:

- Das Modul wird vollständig durch die Bediensoftware imc STUDIO unterstützt.
- Umschaltung: Das CAN FD Interface kann per Software auf Standard CAN Protokoll (max. 1 MBaud) umgeschaltet werden.
- Die CAN Bus Einstellungen werden in einem Assistenten durchgeführt. Die Bedienung des Assistenten ist dem Handbuch der Bediensoftware zu entnehmen.
- Als Zusatz-Optionen für die mit CAN Interface ausgerüsteten Geräte ist ein Paket verfügbar (in Verbindung mit imc Online FAMOS), das ECU Protokolle unterstützt: OBD-2, CCP, KW2000, XCPoC (XCP over CAN), u.a.

Übertragungsprotokoll:

- CAN FD (ISO 11898-1:2015) 8 MBaud
- CAN High Speed (ISO 11898) 1 MBaud
- CAN Low Speed (ISO 11519) 125 KBaud

Isolationsfestigkeit:

• 60 V gegen Systemmasse (Gehäuse, CHASSIS)

Software Mindestvoraussetzungen:

Der Betrieb von Geräten mit CAN FD Interface erfordert mindestens Betriebssoftware aus folgender Gruppe: imc STUDIO 5.0 R5 in Verbindung mit Firmware und Treibern imc DEVICES 2.9 R6.

Hinweis

Upgrade-Option

Es gibt eine Upgrade Möglichkeit ausschließlich für imc CRONOScompact (CRC) Systeme sowie für CRFX Basis Einheiten, die ab 2015 geliefert wurden und mit einem CAN-Bus Interface ausgestattet sind! Bei diesem Upgrade wird das CAN Bus Interface durch das CAN FD Interface ausgetauscht.

Technische Daten - CAN FD-Bus

Parameter	Wert	Bemerkungen
Zahl der CAN-Knoten	2	je ein potentialfreier, galvanisch isolierter Knoten pro Stecker
Anschluss-Stecker	2x DSUB-9	
Topologie	Bus	
Übertragungsprotokoll	per Software umschaltbar:	individuell für jeden Knoten
	CAN FD (ISO Standard) (max. 8 MBaud)	aktueller Standard nach ISO 11898-1:2015
	non-ISO CAN FD (Draft) (max. 8 MBaud)	früherer Entwurf (Bosch)
	CAN High Speed (max. 1 MBaud)	nach ISO 11898
	CAN Low Speed (max. 125 KBaud)	nach ISO 11519
Betriebsart	Multi Master Prinzip	
Datenflussrichtung	senden und empfangen	
Baudrate	5 kbit/s bis 8 Mbit/s	per Software einstellbar; Maximum je nach gewähltem Protokoll (FD/High/Low Speed)
Terminierung	120 Ω	per Software für jeden Knoten zuschaltbar
Isolationsfestigkeit	60 V	gegen Systemmasse (Gehäuse, CHASSIS)
Direktes Parametrieren von imc CANSAS Messmodulen	ja	über den CAN-Knoten des Gerätes mittels imc STUDIO (im CAN High Speed Modus)

Hir

Hinweis

Remote Frame

imc Geräte unterstützen zurzeit keine Remote Frames (RTR) gemäß CAN Spezifikation.

Technisches Datenblatt

LIN-Bus

LIN-Bus ist ein besonders einfacher und kostengünstiger Feldbus-Standard aus dem Automotive-Bereich, der insbesondere für die Vernetzung von intelligenten Sensoren und Aktuatoren konzipiert ist. Brutto Übertragungs-Raten erreichen bis zu 20 kbit/s. Das imc LIN-Interface stellt zwei unabhängige, galvanisch isolierte Knoten zur Verfügung, die als Slave arbeiten können und mit limitierter Basisfunktionalität auch als Master. Beim Betrieb als Master ist dabei nur eine feste Schedule-Tabelle im LDF-File unterstützt, also ein fester Abfragezyklus (Basistakt).

Anschlüsse: 2x DSUB-9 (je 1 potentialfreier LIN-Knoten pro Stecker)

Software und Bedienung:

- Das Modul wird vollständig durch die Bediensoftware imc STUDIO unterstützt.
- Die LIN-Bus Einstellungen werden in einem Assistenten durchgeführt. Die Bedienung des Assistenten ist dem Handbuch der Bediensoftware zu entnehmen.

Übertragungsprotokoll:

• LIN 2.1; LIN 2.0; LIN 1.3 (Beide LIN-Spezifikationen (LIN 1.3 und 2.x) können auf einem Bus gleichzeitig laufen.)

Isolationsfestigkeit: 60 V gegen Systemmasse (Gehäuse, CHASSIS)

Bemerkung: "Master Node" 1 $k\Omega$ Widerstand durch die Software für jeden Knoten zuschaltbar.

Technische Daten - LIN-Bus

Parameter	Wert	Bemerkungen
Knoten	2	pro Knoten LIN_IN / LIN_OUT
Anschluss-Stecker	2x DSUB-9	ein DSUB pro Knoten
Topologie	Bus	
Übertragungsprotokoll	LIN 2.1, LIN 2.0, LIN 1.3	LIN 1.3 und LIN 2.x können auf einem Bus gleichzeitig laufen.
Betriebsart	Master und/oder Slave	Master: mit fester Schedule-Tabelle im LDF-File
Datenflussrichtung		
Versenden	Display Variablen, virtuelle Bits	
Empfangen	LIN Daten in Messkanälen	
Baudrate	1 bis 20 kbit	
Datendurchsatz	30 kS/s	
Terminierung	Pull up Widerstand	per Software schaltbar Master/Slave
Isolationsfestigkeit	60 V	gegen Systemmasse (Gehäuse, CHASSIS)

Technisches Datenblatt

ARINC-Bus

Der ARINC Bus ist ein speziell auf den Luft- und Raumfahrtbereich (aviation) zugeschnittenes Feldbus-System mit Übertragungsraten von bis zu 100 kbit/s.

Anschlüsse:

• 2x DSUB-15 (imc-Standard, kundenspezifische Belegungen können berücksichtigt werden) 8 Rx Empfangskanäle, 4 Tx Sendekanäle

Software und Bedienung:

- Das Modul wird vollständig durch die Bediensoftware imc STUDIO unterstützt.
- Die ARINC Bus Einstellungen werden in einem Assistenten durchgeführt. Die Bedienung des Assistenten ist dem Handbuch der Bediensoftware zu entnehmen.

Übertragungsprotokoll:

• ARINC 429

Technische Daten - ARINC-Bus

Parameter	Wert typ.	min. / max.	Bemerkungen
Anzahl der Receive Kanäle		8	empfangen
Anzahl der Transmit Kanäle	4	4	senden
Anschluss-Stecker	2x DS	UB-15	
Übertragungsprotokoll	ARIN	C 429	
Baudrate		,5 kbit/s) 00 kbit/s)	
Max Spannung für jeden Rx Anschluss	±29 V		gegen Systemmasse (CHASSIS)
Spannung für jeden Tx Anschluss	5 V	4,5 V / 5,5 V	gegen GND "Null": min -0,25 V max 0,25 V
	10 V	9 V / 11 V	differentiell "Null": min -0,5 V max 0,5 V
Isolationsfestigkeit	keine galvanische Isolation		

Technisches Datenblatt

FlexRay-Bus

FlexRay ist ein serielles Feldbus-System aus dem Automobil-Bereich (automotive), das zur Vernetzung von Steuergeräten dient und Übertragungsraten von bis zu 10 Mbit/s / Kanal erlaubt.

Das imc FlexRay Interface bietet eine Anbindung an diesen Bus sowohl zum empfangen (lesen) als auch zum senden (schreiben).

Das Modul verarbeitet einen FlexRay Cluster, bestehend aus zwei FlexRay Kanälen, die parallel oder getrennt betrieben werden können.

Anschlüsse: 1x DSUB-9 (Kanäle A & B zusammen), optional 2x DSUB-9 (Kanal A und B separat)

Software und Bedienung:

- Das Modul wird vollständig von der Bediensoftware imc STUDIO unterstützt.
- Die FlexRay-Bus Einstellungen werden in einem Assistenten durchgeführt. Die Bedienung des Assistenten ist dem Handbuch der Bediensoftware zu entnehmen.
- FIBEX-Dateien, die die Beschreibung der Parametrierung des FlexRay Clusters enthält, können importiert werden. Die Einstellungen können im Assistenten verändert werden. Die Daten auf dem FlexRay Cluster können erfasst werden.
- Das Interface kann auch Frames versenden. Der Inhalt der Frames wird über den Prozessvektor, virtuelle Bits und Display Variablen festgelegt. Dieser Betrieb ist in Zusammenhang mit imc Online FAMOS möglich.

Übertragungsprotokoll:

• FlexRay protocol specification v3.0

Isolationsfestigkeit:

• 60 V gegen Systemmasse (Gehäuse, CHASSIS)

Technisches Datenblatt

Technische Daten - FlexRay-Bus

Parameter	Wert	Bemerkungen
Zahl der FlexRay Knoten	1 zusätzlich 1 Kaltstart Knoten	1x Channel A+B
Anschluss-Stecker Standard Topologie	1x DSUB-9 pro Modul Bus	optional 2x DSUB-9 (Kanal A u. B separat)
Übertragungsprotokoll	FlexRay Protokoll Spezifikation V3.0 XCP- Spezifikationen Universal Measurement and Calibration Version 1.2.0; Date: 2013-06-20"	 ASAM_AE_MCD-1_XCP_BS_Protocol-Layer_V1-2-0.pdf "ASAM MCD-1 (XCP); Protocol; Protocol Layer Specification; ASAM_AE_MCD-1_XCP_AS_Flexray-Transport-Layer_V1-2-0.pdf "ASAM MCD-1 (XCP on FlexRay); Protocol; FlexRay Transport Layer;
Betriebsart	Sync-Knoten, Kaltstart-Knoten oder normaler Knoten	
Datenflussrichtung Versenden	Display Variablen, Virtuelles Bit, Prozessvektoren und Ethernet-Bits	Zyklisch und SingleShot-Frames mit imc Online FAMOS
Baudrate max. Kabellänge bei Übertragungsrate	2,5 / 5,0 oder 10,0 Mbit/s siehe FlexRay Protokoll	
Datendurchsatz Isolationsfestigkeit	max. 60 kSamples/s 60 V	pro Modul gegen Systemmasse (Gehäuse, CHASSIS)

Technisches Datenblatt

XCPoE Master-Slave

Das "Extended Calibration Protocol" XCP ist ein Übertragungsprotokoll, welches insbesondere im Automotive-Umfeld für die Kommunikation zwischen Steuergeräten eingesetzt wird. Unter Verwendung von Ethernet als Transportschicht (oE = over-Ethernet) wird es von diesem Feldbus-Ergänzungsmodul für imc Geräte unterstützt. Unterschieden werden Master und Slave, wobei die entsprechenden Varianten angeboten werden.

Anschlüsse: 1x RJ45 -Ethernet 100 Mbit/s

Slave:

Das imc Messgerät fungiert als Slave und kann seine erfassten Daten über Ethernet externen Applikationen zur Verfügung stellen. Das imc Gerät verhält sich dabei wie ein Steuergerät. Damit ist eine Integration des imc Messgerätes in andere Umgebungen möglich: die Daten werden für Standard Software Pakete verschiedener Hersteller, wie Canape von Vector oder INCA von ETAS direkt zugänglich.

Mit dem Modus "Slave" ist bestimmt, dass die Kommunikation maßgeblich vom externen XCP-Master bestimmt wird und nicht vom imc-System. Der Slave-Modus bestimmt dabei zunächst nicht, in welche Richtung (in/out) diese Kommunikation gerichtet ist. Prinzipiell ist auch für einen XCP-Slave nicht nur das zur Verfügung stellen (output) von Variablen definiert, sondern auch das Entgegennehmen (input, Stimulus), auch wenn dieser Modus vom imc Slave-Modul aktuell nicht unterstützt wird!

• Die Konfiguration der XCPoE-Gegenstelle erfolgt über eine A2L-Datei, die beim Vorbereiten der Messung erstellt wird.

Als Signalquelle können folgende Kanaltypen verwendet werden:

- analoge/digitale abgetastete Eingangskanäle
- analoge/digitale abgetastete Feldbuseingangskanäle, jedoch keine Feldbusprotokollkanäle
- abgetastete virtuelle Kanäle (imc Online FAMOS Kanäle, jedoch keine FFTs, keine Hisotgramme).
- Die Kanäle müssen durch den "BaseTrigger" (ein "sofort-Trigger") getriggert werden.

Dieses Kanalkopplung-Konzept ist gültig ab folgender Software-Version:

imc STUDIO 5.0 R1 in Verbindung mit Firmware und Treibern imc DEVICES 2.8 R5 SP4.

Für die volle Funktionalität (insbesondere pv und Sendefunktionen) ist imc Online FAMOS Professional OFA Pro (Zusatzlizenz) erforderlich.

Der XCPoE Client fordert nach dem Konfigurieren des Gerätes die Messdaten an. Ein schneller und synchroner Datentransfer von max. 50 kHz pro Kanal ist über Ethernet möglich:

- Die Kanäle werden mit ihren individuellen Kanalraten auch über XCP propagiert
- Dies gilt auch für die virtuellen Kanäle, was damit auch mehr als 2 Datenraten im System zulässt. Max. 5 verschiedene Ausgaberaten werden unterstützt: Dies ist ein Limit des XCP-Protokolls selbst!
- Die XCP-Botschaften erhalten einen Zeitstempel, der sich auf das Erfassungsdatum im imc-System bezieht. Alle Kanäle in der XCP-Botschaft sind zueinander perfekt zeitsynchron, so wie das auch für das imc-System gilt, also systemweit, auch für unterschiedliche Modul- und Kanaltypen.

Master:

Das imc Messgerät arbeitet als XCPoE Master und kann Daten von einem Steuergerät über das XCP Protokoll erfassen.

- Die Konfiguration des XCP-Masters (imc Gerät) erfolgt über eine A2L-Datei, die für das anzusprechende Steuergerät vorliegen muss.
- Die Abtastrate bei der Aufnahme der XCP Kanäle kann bis max. 10 kHz eingestellt werden.

Software und Bedienung:

Das Modul wird vollständig durch die Bediensoftware imc STUDIO unterstützt.

Technisches Datenblatt

• Die XCPoE Einstellungen werden in einem Assistenten durchgeführt. Die Bedienung des Assistenten ist dem Handbuch der Bediensoftware zu entnehmen.

Übertragungsprotokolle:

"XCP -Part 1- Overview" Ver. 1.0; ASAM e.V. "XCP -Part 2- Protocol Layer Specification" Ver. 1.0; ASAM e.V.

"XCP -Part 3- Transport Layer Specification

XCP on Ethernet (TCP/IP und UDP/IP)" Ver. 1.0; ASAM e.V. "XCP -Part 4- Interface Specification" Ver. 1.0; ASAM e.V.

Isolationsfestigkeit: Standard-Isolation der Ethernet-Schnittstelle

Technische Daten - XCPoE Master-Slave

Parameter	Wert	Bemerkungen	
Knoten	1		
Anschluss-Stecker	1x RJ45		
Übertragungsprotokoll	"XCP -Part 1- Overview";	Ver. 1.0; ASAM e.V.	
	"XCP -Part 2- Protocol Layer Specification"	Ver. 1.0; ASAM e.V.	
	"XCP -Part 3- Transport Layer Specification XCP on Ethernet (TCP_IP and UDP_IP)";	Ver. 1.0; ASAM e.V.	
	"XCP -Part 4- Interface Specification"	Ver. 1.0; ASAM e.V.	
Betriebsart (Bestelloption)	Master	A2L-Datei wird eingelesen (auch XCPplus wird unterstützt)	
	oder		
	Slave	A2L-Datei wird erstellt	
Versendbare Kanaltypen sofern als Slave betrieben	einige Messkanäle (analoge, digitale, Feldbus-, sowie virtuelle Kanäle (OFA)		
Datenrate pro Kanal		je nach Systemkonfiguration	
	max. 50 kHz	Slave	
	max. 10 kHz	Master	
Max Kabellänge	100 m		
Hardware Schnittstelle (Physical Layer)	Ethernet 100 Mbit/s		
Isolationsfestigkeit	Standard Ethernet Spezifikation		

Technisches Datenblatt

PROFIBUS

PROFIBUS-DP hat als industrieller Feldbus für die Fertigungs- und Prozess-Automatisierung weltweite Verbreitung gefunden. Sowohl Sensoren und Aktuatoren als auch mehrere verteilte Steuerungen können mit Datenraten bis zu 12 Mbit/s vernetzt werden.

Das imc PROFIBUS Interface ist eine Schnittstelle mit der die laufende Kommunikation in einem Profibusnetzwerk protokolliert und interpretiert werden kann. Sie bietet die Möglichkeit einzelne Botschaften aus der laufenden Kommunikation herauszufiltern und die darin enthaltenen Daten als Messkanäle anzuzeigen.

Für die Konfiguration der Schnittstelle werden genaue Kenntnisse über die Konfiguration des Profibusnetzwerkes benötigt. Um ein Datagramm aus einer Botschaft zu extrahieren werden beispielsweise folgende Informationen benötigt:

- 1. Übertragungsrate des Profibusnetzwerks
- 2. Verwendetes Profibusprotokoll
- 3. Busadresse des Versenders der Botschaft
- 4. Busadresse des Empfängers der Botschaft
- 5. Byte- bzw. Bitoffset des Datagramms in der Botschaft.

Im Allgemeinen können die benötigten Informationen aus der Konfiguration des Profibus-Masters und der Beschreibung des jeweiligen Profibus-Slaves (GSD-Datei) entnommen werden.

Anmerkung: Da keine logische Verbindung zum Profibusnetzwerk besteht, ist ein Senden und Empfangen von Daten als Busteilnehmer nicht möglich. In diesem Sinne handelt es sich nicht um ein Profibus Master- oder Slave-Interface, sondern um eine Schnittstelle, mit welcher die Buskommunikation als unabhängiger Beobachter ("Sniffer") protokolliert werden kann.

Software und Bedienung:

- Das Modul wird vollständig durch die Bediensoftware imc STUDIO unterstützt.
- Die PROFIBUS Einstellungen werden in einem Assistenten durchgeführt. Die Bedienung des Assistenten ist dem Handbuch der Bediensoftware zu entnehmen.

Unterstütze Profibusprotokolle: DPV0, DPV1

Isolationsfestigkeit: 60 V gegen Systemmasse (Gehäuse, CHASSIS)

Technische Daten - PROFIBUS

Parameter	Wert	Bemerkungen
Knoten	1	
Anschluss-Stecker	1x DSUB-9 pro Modul	RS 485
Übertragungsprotokoll	DPV0, DPV1	
Betriebsart	Sniffer (Protokollieren der Buskommunikation)	kein Master, kein Slave
Baudrate	max. 12 Mbit/s	
max. Kabellänge bei Übertragungsrate	PROFIBUS Spezifikation	
Isolationsfestigkeit	60 V	gegen Systemmasse (Gehäuse, CHASSIS)

Technisches Datenblatt

PROFINET-IRT

Profinet als Kommunikationsstandard des echtzeitfähigen Industrial Ethernet dient insbesondere zur Vernetzung von Industrie-Steuerungen wie z.B. SPS und Werkzeugmaschinen.

Das PROFINET-IRT Interface erlaubt imc Geräten eine Anbindung an derartige Umgebungen zum bidirektionalen Austausch von Maschinenparametern, Steuergrößen, Messwerten, Alarmen etc. Es ist nach Konformitätsklasse CC-C implementiert, und unterstützt damit Echtzeitfunktionalität insbesondere durch Mechanismen der Synchronisation (PTP) und reservierten Bandbreite (IRT = Isochronous Real Time).

Das Interface macht ein imc Gerät zum vollwertigen IO-Device Teilnehmer und wird physisch in das Steuerungs-Netzwerk durch zwei dedizierte RJ45 Anschlüsse angekoppelt bzw. eingeschleift (interner Ethernet Switch).

Für die volle Funktionalität (insbesondere pv und Sendefunktionen) ist imc Online FAMOS Professional OFA Pro (Zusatzlizenz) erforderlich.

Die Eigenschaften des imc Geräts als Profinet IO-Device werden in einer GSD-Datei (General Station Description) gekapselt und vollständig beschrieben. Diese ist auch über die imc Webseite verfügbar. Damit kann man sich bereits Offline einen Überblick über die Fähigkeiten des Moduls verschaffen und Konfigurationen mit einem Profinet Konfigurations-Tool wie etwa TIA Portal o.ä. erstellen.

Innerhalb von imc STUDIO wird das Interface durch einen Assistenten vollständig unterstützt. Er erlaubt etwa die Zuordnung der auszutauschenden Variablen und Daten zu Kanälen und pv-Variable des Geräts. Die Software umfasst dabei auch einen Datentyp-Konverter, der mannigfaltige Datenformate mappen und matchen kann (z.B. Int, .Float, Big-Endian / Little-Endian).

Technische Daten - PROFINET-IRT

Profinet-Klasse	Wert	Bemerkungen
Knoten	1	
Geräteklasse	IO-DEVICE	
Funktionsumfang	CC-C	Conformance Class C
Profinet-Zertifizierung	Netload Class III zertifiziert nach PNIO-version V2.34	
Zyklische Datenübertragung	RT, IRT	
Minimale unterstützte Buszykluszeit	250 μs	Isochronous Real Time (IRT)

Technisches Datenblatt

Netzwerk-Anschluss	Wert	Bemerkungen
Anschlüsse	2x RJ45	interner Netzwerk-Switch Beschriftung: Port 1 und Port 2
Netzwerk	100 Mbit/s	Vollduplex mit Autonegotiation
Isolation	Standard Ethernet Spezifikation	
Realisierbare Topologien	Stern/Baum/Linie/Ring	
NET Status LED	grün / rot	
	zeigt folgende Statusinfos an: Verbindung zum IO-Controller Run / Stop State Netzwerkidentifikation Fehler der Identifikation IRT Synchronisation	
MOD Status-LED	grün / rot zeigt folgende Zustände an: Initialisierung Normalbetrieb	
	Diagnoseereignisse Interne Fehler Firmware-Update	
Netzwerk Status-LEDs	grün (links) / gelb (rechts)	an jeder RJ45
	zeigt an: Aktivität und Baudrate	100 Mbit/s vs. 10 Mbit/s

Konfigurations- Möglichkeiten	Wert	Bemerkungen
Unterstützte Variablenzuordnung	Kanäle, pv-Varianble	Zuordnung zu Profinet-Variablen
Max. Anzahl pv-Variablen	800	allgemeines Systemlimit für imc CRONOS Geräte
Endianess Unterstützung	Big-Endian / Little-Endian	Byte-Reihenfolge (Motorola/Intel), über Assistenten
interner Datentypkonverter	ja	
Speichern / Laden von Konfigurationen	ja	über Assistenten
Validitätsprüfung von Konfigurationen	ja	über Assistenten
Anzahl steckbarer Slots	40	Profinet: logische Modulstruktur "Stecken" von Slots = Parametrierung logischer Einheiten
max. steckbare Ausgangsmodule	20	
Größe je Ausgangsmodul	64 Byte	
max. steckbare Eingangsmodule	20	
Größe je Eingangsmodul	64 Byte	
Maximaler E/A Prozessraum	je 1280 Byte	20 · 64 Byte

Technisches Datenblatt

EtherCAT Slave

Das Feldbus Modul EtherCAT Slave Interface (imc ECAT-Slave-IF) ermöglicht den Einsatz von imc Messgeräten und Feldbusloggern in einem Automatisierungssystem mit EtherCAT-Feldbus.

Über das Interface wird das komplette imc CRONOS Gerät als Slave-Modul in den EtherCAT Feldbus eingebunden, welcher von einem externen EtherCAT Master betrieben wird.

Damit sind Daten aus dem imc Messgerät innerhalb eines EtherCAT Systems verfügbar und es wird eine Integration des Geräts in andere System-Umgebungen möglich. Das Interface ist nicht nur begrenzt auf das Auslesen von Daten und Variablen aus dem imc System. Darüber hinaus können auch Variablen und Systemparameter des imc Systems (Slave) durch den externen EtherCAT Master geschrieben bzw. manipuliert werden, was eine sehr enge Anbindung und weitgehende Steuerungsmöglichkeiten eröffnet.

Anschlüsse:

- 2x RJ45 EtherCAT 100 Mbit/s
- bei CRONOS-XT (CRXT) 2x M8 EtherCAT 100 Mbit/s

EtherCAT Kabel (CRXT Systembus)		
ACC/CABLE-ECAT-M8-2M	EtherCAT Kabel CRXT, beidseitig M8-Stecker, 2 m	13500386
ACC/CABLE-ECAT-M8-RJ45-2M	EtherCAT Kabel CRXT, einseitig M8-Stecker auf RJ-45, 2 m	13500387
ACC/CABLE-ECAT-M8-10M	EtherCAT Kabel CRXT, beidseitig M8-Stecker, 10 m	13500388
ACC/CABLE-ECAT-M8-RJ45-10M	EtherCAT Kabel CRXT, einseitig M8-Stecker auf RJ-45, 10 m	13500389

Software und Bedienung:

Das Modul wird vollständig durch die imc Bediensoftware imc STUDIO unterstützt. Die Einstellungen werden in einem Assistenten durchgeführt. Die Bedienung des Assistenten ist dem Handbuch der Bediensoftware zu entnehmen

Für die volle Funktionalität (insbesondere pv und Sendefunktionen) ist imc Online FAMOS Professional OFA Pro (Zusatzlizenz) erforderlich.

- Als Signalquelle wird der Prozessvektor des imc Gerätes verwendet. D.h. die als Prozessvektor-Variablen repräsentierten Messkanäle und virtuellen Kanäle sind über EtherCAT für externe Teilnehmer und Systeme verfügbar. Die Daten sind unabhängig von Triggerauslösungen direkt nach dem Vorbereiten verfügbar und gültig.
- Über das Interface können Prozessvektor-Variablen (pv-Variablen) des imc Systems gelesen und geschrieben werden. Das Lesen bzw. Schreiben kann zyklisch oder azyklisch erfolgen.
 - Zyklische Daten werden nach dem Start des Feldbusses und des imc Gerätes in festen Intervallen übertragen.
 - Azyklische Daten lassen sich durch den EtherCAT Master asynchron über das Protokoll CoE (CANopen over EtherCAT) abfragen, welches vom imc Gerät unterstützt wird.
- Das imc Messgerät wird über die Gerätesoftware imc STUDIO parametriert. Die Konfiguration wird dem EtherCAT Master über ein "EtherCAT-Slave-Information" Dokument (ESI) im XML-Format übergeben.

Übertragungsprotokoll:

- EtherCAT Specification Part 4 Data Link Layer protocols specification
- EtherCAT Specification Part 6 Application Layer protocol specification

Isolationsfestigkeit: Standard-Isolation der EtherCAT-Schnittstelle

Technisches Datenblatt

Technische Daten - EtherCAT Slave

Parameter	Wert	Bemerkungen
Knoten	1	
Anschluss-Stecker bei CRXT sonst	2x M8 2x RJ45	EtherCAT in / out
Übertragungsprotokoll	EtherCAT Specification – Part 4 Data Link Layer protocols specification EtherCAT Specification – Part 6 Application Layer protocol specification	Neben der zyklischen Datenübertragung auf EtherCAT Basis, ist die Konfiguration des Interface über CANopen® over EtherCAT (CoE) verfügbar
Betriebsart	Slave	
Datenflussrichtung		
Versenden	Prozessvektor	
Empfangen	Prozessvektor	
Maximale Kabellänge	100 m	EtherCAT 100 Mbit/s
Maximaler Bustakt	200 μs (5 kHz)	
Maximale zyklische übertragbare Kanalanzahl	Bustakt/4,5 μs - 10	max. 34 Kanäle bei 200 μs Bustakt
Isolationsfestigkeit	Standard EtherCAT Spezifikation	

Technisches Datenblatt

MVB-Bus

MVB ist eine Abkürzung für "Multipurpose Vehicle Bus". Dieser Bus ist ein serieller Kommunikationsbus für Schienenfahrzeuge. Er verbindet Steuergeräte untereinander und auch mit einfachen Sensoren und Aktoren.

Der MVB ist unter anderem standardisiert durch die International Electrotechnical Commission (IEC) und durch das Deutsches Institut für Normung (DIN).

Das MVB-Bus Interface integriert diesen Feldbus in ein imc Messgerät um die im Fahrzeug bereits vorhandenen Messkanäle, Statusinformationen und Steuerungs-Kommunikation verfügbar zu machen. Es kann auf Anfrage anstelle der drahtgebundenen elektrischen Ankopplung auch mit optischer Glasfaser-Übertragung ausgerüstet werden, um den besonderen Anforderungen an die Immunität gegenüber elektromagentischen Störungen gerecht zu werden, die insbesondere in elektrischen Schienenfahrzeugen relevant sind.

Anschlüsse: 2x DSUB-9

Software und Bedienung:

• Das Modul wird vollständig von der Bediensoftware imc STUDIO unterstützt.

• Die MVB Bus Einstellungen werden in einem Assistenten durchgeführt. Die Bedienung des Assistenten ist dem Handbuch der Bediensoftware zu entnehmen.

Bemerkung zur Betriebssicherheit:

 Die Beschaltung ist hardwaremäßig auf entweder EMD oder ESD+ festgelegt. Es ist sicherzustellen, dass das Gerät nur an einem Bus angeschlossen und betrieben wird, der dem ausgewählten Standard entspricht. Die Funktion des MVB Busses ist durch eine fehlerhafte (bzw. nicht kompatible) Beschaltung nicht gewährleistet, was zu einer Störung des Buskommunikation, Fehlfunktionen fremder Busteilnehmer, sowie einer Zerstörung des Gerätes führen kann.

Technische Daten - MVB-Bus

Parameter	Charakteristik
Knoten	1
Übertragungsmedium	Kupfer, RS485
Anschluss-Stecker	2x DSUB-9
Topologie	Bus
Übertragungsprotokoll (Normen)	IEC 61375-3-1 Electronic Railway Equipment - Train Communication Network - Part 3-1: MVB - Multipurpose Vehicle Bus IEC 61375-3-2 Electronic railway equipment - Train communication Network - Part 3-2: MVB -
Physical Layer	Multipurpose Vehicle Bus Conformance Testing EMD Electrical Middle distance medium
	rückwirkungsfreier Abgriff der Daten oder ESD+ Electrical short distance
Betriebsart	Loggen von zyklischen Prozessdaten
Leitungslänge	200 m mit bis zu 32 Teilnehmern
Redundanz	doppelt
Datenrate	1,5 Mbit/s
Adressraum	4095 physikalische Geräte, 4095 logische Ports, 8-Bit Stationsadresse für Botschaften
Frame-Größe	16, 32, 64, 128 und 256 Bit
Isolationfestigkeit	500 V _{RMS} (1 min.)

Technisches Datenblatt

Modbus

Bei dem imc Modbus Interface handelt es sich um ein Feldbusmodul, mit dem die imc Messgeräte ausgestattet werden können. Modbus¹ ist ein weit verbreitetes Kommunikationsprotokoll für industrielle Automatisierungsgeräte.

Das Interface arbeitet als Modbus-Client und kann Daten von mehreren Modbus-Server-Geräten adressieren und empfangen. Es dient dazu, Fremdgeräte (3'rd Party Devices), die mit Modbus ausgestattet sind, als zusätzliche Messdatenquellen in imc Messsysteme und Datenlogger zu integrieren.

Beide für Modbus standardisierten Protokolle und Schnittstellen (Physical Layer) werden unterstützt:

- Modbus TCP Ethernet (100 MBit)
- Modbus RTU Serielle Schnittstellen (RS232, RS485 half-duplex und full-duplex)

Beide Hardware-Schnittstellen stehen auf dem Modul zur Verfügung (RJ45 und DSUB-9) und können auch parallel betrieben werden.

1: Modbus® ist eine registrierte Marke der Schneider Automation, Inc.

Typische Anwendungen:

- Integration externer Geräte und Sensoren mit Modbus-Interface in ein imc-Messsystem.
- Erweiterung der Fähigkeiten eines imc Systems, um spezifische Sonderfunktionen oder Sensoren, die nur mit Geräten von Fremdherstellern abgedeckt werden können.
- Einsatz von speziellen Instrumenten (z.B. Leistungsmesser, Netzanalysatoren, Laborgeräte), Sensoren (z.B. Feuchte- oder ph-Sensoren, Pyrometer), Sensorsystemen (z.B. Wetter-Station) oder Test-Infrastruktur (Messung der aktuellen Temperatur von Klimaschränken)
- Low-Speed Monitoring von Umwelt-Parametern und elektrischer Leistung
- Einsatz von Standard-Ausrüstung aus dem Bereich der industriellen Testautomatisierung
- Verwendung von imc Systemen als zentrale Plattform und Gateway, mit Aufnahme, Verarbeitung von Daten der unterschiedlichsten Quellen (imc System, analog, Modbus, Feldbusse) und Verteilung bzw. Vernetzung mit übergeordneten Systemen via CAN-Bus, EtherCAT oder XCPoE.

Eigenschaften:

- Dedizierter Prozessor vermeidet Belastung von Ressourcen des Hauptprozessors am imc-System und sichert Performance und Skalierbarkeit
- Maximale Flexibilität: Beide Hardware-Schnittstellen sind vorhanden und gleichzeitig betreibbar
- Geräte-basierte Integration in das Messsystem erlaubt die Nutzung aller erweiterten Fähigkeiten und Funktionalitäten wie Live-Datenanalyse mit imc Online FAMOS, Einbindung in Echtzeit-Testautomatisierung (imc STUDIO Automation) etc.
- Erfassung von Eingangsdaten (Messdaten) von Modbus-Geräten, Keine Ausgabe via Modbus (keine Ansteuerung von z.B. Aktuatoren, Steuerungen etc.)
- Plug & Play Lösung mit komfortablem Konfigurations-Assistenten in imc STUDIO

Technisches Datenblatt

Funktionalitäten:

Als Funktionscodes stehen zur Auswahl:

- 01 (0x01) Read Coils
- 02 (0x02) Read Discrete Inputs
- 03 (0x03) Read Holding Registers
- 04 (0x04) Read Input Registers

Das imc Messgerät verarbeitet die erfassten Modbusdaten als:

- Kanäle ("FIFO-Kanäle")
- pv-Variablen ("Prozessvektor")

Software Mindestvoraussetzungen:

Der Betrieb von Geräten mit Modbus Interface erfordert mindestens Betriebssoftware aus folgender Gruppe: imc STUDIO 2023 R1 in Verbindung mit Firmware und Treibern imc DEVICES 2.16 R1.

Technische Daten - Modbus

Allgemein		
Parameter	Wert	Bemerkungen
Schnittstellen und Protokolle	1x Ethernet (Modbus TCP) 1x Serieller Port (Modbus RTU) Service-Schnittstelle	beide Schnittstellen gleichzeitig, parallel betreibbar 3,5 mm Klinke, für Servicezwecke, nicht vom Anwender zu verwenden
Modul-Breite	benötigt 1 Steckplatz	fest verbaut, ab Werk
Modularität	Bestell-Option	
Max. Ausbau	3 8	in Summe in einer CRFX Basis Einheit in Summe in einem CRC, SPAR System
	1/2/3/5	in Summe in einem BUSFX-4/-6/-8/-12 System

Modbus Protokoll		
Parameter	Wert	Bemerkungen
Unterstützte Funktions-Codes	01 (0x01)	Read Coils
	02 (0x02)	Read Discrete Inputs
	03 (0x03)	Read Holding Registers
	04 (0x04)	Read Input Registers
Unterstützter Betriebsmodus	Client-Server	direkte Adressierung von Server Geräten
		Lesen (empfangen von Daten)
		Schreiben (senden von Daten): nicht unterstützt

Ethernet Interface (Modbus TCP)		
Parameter	Wert	Bemerkungen
Anschlüsse / Knoten	1	
Anschluss-Stecker	1x RJ45	
Topologie	Bus	
Übertragungsprotokoll	TCP / IP	IEEE Norm 802.3
Baudrate	100 MBit	100BaseT (Halb- und Vollduplex)
	10 MBit	10BaseT (Halb- und Vollduplex)
		Autosensing
Isolationsfestigkeit	60 V	gegen Systemmasse (CHASSIS)

Technisches Datenblatt

Serielles Interface (Modbus RTU)		
Parameter	Wert	Bemerkungen
Anschlüsse / Knoten	1	
Anschluss-Stecker	1x DSUB-9	
Baudrate	300, 1200, 2400, 4800, 9600, 14400, 19200, 28800, 38400, 57600, 115200, 230400	Sonder-Bitraten: 14400 und 28800
Isolation	galvanisch isoliert	gegen Systemmasse (CHASSIS)
Isolationsfestigkeit	60 V	nominale Arbeitsspannung
Betriebs-Modi	RS 232	flexibel konfigurierbar: Multi-Protocol
	RS 485 (half-/full duplex)	Transceiver
RS232 Modus		
Parameter	Wert	Bemerkungen
Topologie	Punkt zu Punkt	
Signalart	Tx, Rx, GND CTS, RTS	Basis Signale Handshake, Fluss-Steuerung
Byteformat	8 Databits, 2 Stoppbits (none parity) oder 1 Stoppbit (odd/even parity)	
Flusskontrolle	XON/XOFF, RTS/CTS	
RS485 Modus		
Topologie	Bus	
Betriebsmodus	Halb- und Vollduplex	per Software schaltbar
Signalart	2x Tx, 2x Rx, GND	Basis Signale, differentiell
Terminierung	120 Ω	per Software schaltbar

Technisches Datenblatt

IPTCom

IPTCom ist ein Ethernet-Netzwerk in einem Zug. Es wird auf das Internet-Protokoll (IP) aufgebaut. Auf dem Internet-Protokoll (IP) basieren die verwendeten Protokolle DHCP, ARP, TCP und UDP. IPTCom bedient sich dieser Protokollschichten, um sein eigenes Protokoll zu implementieren.

Anschlüsse:

• IPTCom ist ein 100 MBit Netzwerk, mit besonderen Steckern ("D" coded 4 pin M12 connector according to IEC 61076-2-101). Das imc IPTCom Interface ist mit einer RJ45-Buchse ausgestattet und benötigt einen Adapter.

Software und Bedienung:

- Das Modul wird vollständig von der Bediensoftware imc STUDIO unterstützt.
- In dem IPTCom-Protokoll gibt es zwei Hauptprotokolle IP-ProcessData und IP-MessageData.
- Implementiert ist ein IPTCom-Client, der nur IP-ProcessData lesen kann. Diese Daten können als imc Kanal gemessen werden, z.B. in zeitgestempelten signed INT16/FLOAT-Kanälen.
- Aktuell ist der IPTCom-Client BOMBARDIER-spezifisch implementiert und getestet. Bei Fragen zur Kompatibilität mit Ihrem System, wenden Sie sich bitte an unsere Hotline.

Isolationsfestigkeit:

• 60 V gegen Systemmasse (Gehäuse, CHASSIS)

Technische Daten - IPTCom

Parameter	Wert	Bemerkungen
Knoten	1	
Anschluss-Stecker	1x RJ45	
Betriebsart	Slave	
Datenflussrichtung		
Empfangen	SINT16/FLOAT-Kanäle	
Datenrate	max. 100 kS/s	Summe
Ethernet	100 Mbit/s	
Isolationsfestigkeit	60 V	gegen Systemmasse (Gehäuse, CHASSIS)

Technisches Datenblatt

RoaDyn Interface

Das RoaDyn® Interface bietet die Schnittstelle zwischen dem Radkraftmesssystem: RoaDyn® System 2000 von Kistler und einem imc CRONOS Messgerät.

Neben den Haupt-Kanälen des RoaDyn® Systems (3x Kraft, 3x Moment, Winkel, Winkelgeschwindigkeit, Temperatur, Versorgungsspannung) sind auch sämtliche Zusatz und Service-Kanäle (Einzelkraft-Komponenten, Fehlerfälle etc.) verfügbar.

Anschlüsse: 2x BNC (Trigger und SYNC) und 1x RJ45

Software und Bedienung:

- Das Modul wird vollständig von der imc STUDIO Bediensoftware des Messgerätes unterstützt.
- Die RoaDyn® Einstellungen werden in einem Assistenten durchgeführt. Die Bedienung des Assistenten ist dem Handbuch der Bediensoftware zu entnehmen.
- Für das Gerät muss die imc Online FAMOS Professional Geräteoption freigeschaltet sein.

Technische Daten - RoaDyn Interface

Parameter	Wert	Bemerkungen
Knoten	Interface für ein Kistler 2000 System für max. 4 Räder	
Anschluss-Stecker	2x BNC	Clock und Trigger
	RJ45	Datenschnittstelle
Kanäle	sämtliche Kanäle des RoaDyn® Systems verfügbar:	
	10 Hauptkanäle (3x Kraft, 3x Moment, Winkel, Winkelgeschwindigkeit, Temperatur, Versorgungsspannung	
	Zusätzlich sämtliche Zusatz und Service- Kanäle (Einzelkräfte, Fehlerfälle etc.)	
Übertragungsmedium	Ethernet 100 Mbit/s	10/100 Mbit/s, zulässige Kabellänge bei 100 Mbit/s Ethernet max. 100 m gemäß IEEE 802.3
Verzögerung der getesteten Kistler Einheiten - Version: 4.01a - DSP-Type: SBC31	2 ms plus 16 Samlpes	gesamte Verzögerung ist in der Datenverarbeitung kompensiert imc Online FAMOS kalkuliert mit den Messdaten
Abtastrate	max. 1 kHz synchronisiert zum imc System	